Research

My research interest lies in understanding and explaining how the structure of complex networks shapes the dynamics on top of them. In particular, my research currently focuses on the study of collective dynamics of nonlinear coupled oscillators (mainly Kuramoto model); analysis of spectral properties of complex networks; and statistical characterisation of real-world networks.

Publications

(Google Scholar) (Arxiv)

New preprints

  1. Interspecific competition shapes the structural stability of mutualistic networks
    Xiangrong Wang, Thomas Peron, Johan L. A. Dubbeldam, Sonia Kefi, Yamir Moreno. arXiv (2021).

  2. A machine learning approach to predicting dynamical observables from network structure
    Francisco A. Rodrigues, Thomas Peron, Colm Connaughton, Jurgen Kurths, Yamir Moreno. arXiv (2019).

  3. Pattern Recognition Approach to Violin Shapes of MIMO database
    Thomas Peron, Francisco A. Rodrigues, Luciano da F. Costa. arXiv (2018).

Journal articles

  1. Mean-field theory of vector spin models on networks with arbitrary degree distributions
    Fernando L. Metz, and Thomas Peron. Journal of Physics: Complexity 3 (1), 015008 (2022).

  2. Statistical properties of mutualistic-competitive random networks
    C.T.Martínez-Martínez, J.A.Méndez-Bermúdez, Thomas Peron, and Yamir Moreno. Chaos, Solitons and Fractals 153, 111504 (2021).

  3. Network processes on clique-networks with high average degree: the limited effect of higher-order structure
    Clara Stegehuis, Thomas Peron. Journal of Physics: Complexity 2 (4), 045011 (2021).

  4. Evolving climate network perspectives on global surface air temperature effects of ENSO and strong volcanic eruptions
    Tim Kittel, Catrin Ciemer, Nastaran Lotfi, Thomas Peron, Francisco Rodrigues, Jürgen Kurths, and Reik V. Donner. 230, 3075–3100 (2021).

  5. Discordant synchronization patterns on directed networks of identical phase oscillators with attractive and repulsive couplings
    Thomas Peron. Phys. Rev. E 103, 042210 (2021).

  6. Performance measures after perturbations in the presence of inertia
    Jiachen Ye, Thomas Peron, Wei Lin, Jürgen Kurths, and Peng Ji
    Communications in Nonlinear Science and Numerical Simulation, 97, 105727 (2021).

  7. Spacing ratio characterization of the spectra of directed random networks
    Thomas Peron, Bruno Messias F. de Resende, Francisco A. Rodrigues, Luciano da F. Costa, and J. A. Méndez-Bermúdez
    Phys. Rev. E 102, 062305 (2020).

  8. Complex systems: Features, similarity and connectivity
    César H. Comin, Thomas Peron, Filipi N. Silva, Diego R. Amancio, Francisco A. Rodrigues, Luciano da F. Costa
    Physics Reports, 861:1-41 (2020).

  9. Comparison of different spike train synchrony measures regarding their robustness to erroneous data from bicuculline induced epileptiform activity
    Manuel Ciba, Robert Bestel, Crhistoph Nick,Guilherme F. de Arruda, Thomas Peron, César Comin, Luciano da F. Costa, Francisco A. Rodrigues, Cristiane Thielemann
    Neural Computation, 32, 5 (2020).

  10. Collective dynamics of random Janus oscillator networks
    Thomas Peron, Deniz Eroglu, Francisco A. Rodrigues, and Yamir Moreno
    Phys. Rev. Research, 2, 013255 (2020).

  11. Onset of synchronization of Kuramoto oscillators in scale-free networks
    Thomas Peron, Bruno Messias, Angélica S. Mata, Francisco A. Rodrigues, and Yamir Moreno
    Phys. Rev. E, 100, 042302 (2019).

  12. Interplay among inertia, time delay, and frustrationon synchronization dynamics
    Fuli Dai, Shijie Zhou, Thomas Peron, Wei Lin, and Peng Ji
    Phys. Rev. E, 98, 5, 052218 (2018).

  13. Spectra of random networks in the weak clustering regime
    Thomas K. DM. Peron, Peng Ji, Jürgen Kurths, and Francisco A. Rodrigues
    Europhysics Letter (EPL), 121, 68001 (2018).

  14. Traveling phase waves in asymmetric networks of noisy chaotic attractors
    Thomas K. DM. Peron, Jürgen Kurths, Francisco A. Rodrigues, Lutz Schimansky-Geier, and Bernard Sonnenschein
    Phys. Rev. E 94, 4, 042210 (2016).

  15. Tweaking synchronization by connectivity modifications
    Paul Schultz, Thomas Peron, Deniz Eroglu, Thomas Stemler, G. Marcelo R. Ávila, Francisco A. Rodrigues, and Jürgen Kurths
    Phys. Rev. E 93, 6, 062211 (2016).

  16. The Kuramoto model in complex networks
    Francisco A. Rodrigues, Thomas K. DM. Peron, Peng Ji, and Jürgen Kurths
    Physics Reports, 610:1-98 (2016).

  17. Concentric network symmetry
    Filipi N. Silva, Cesar Comin, Thomas K. DM. Peron, Francisco A. Rodrigues, Cheng Ye, Richard C. Wilson, Edwin Hancock, and Luciano da F. Costa
    Information Sciences, 333:61–80 (2016).

  18. Collective dynamics in two populations of noisy oscillators with asymmetric interactions
    Bernard Sonnenschein, Thomas K. DM. Peron, Francisco A. Rodrigues, and Lutz Schimansky-Geier
    Phys. Rev. E 91, 6, 062910 (2015).

  19. Effects of assortative mixing in the second-order Kuramoto model
    Thomas K. DM. Peron, Peng Ji, Francisco A. Rodrigues, and Jürgen Kurths
    Phys. Rev. E 91, 5, 052805 (2015).

  20. Thermodynamic characterization of networks using graph polynomials
    Cheng Ye, César H. Comin, Thomas K. DM. Peron, Filipi N. Silva, Francisco A. Rodrigues, Luciano da F. Costa, Andrea Torsello, and Edwin R. Hancock
    Phys. Rev. E 92, 3, 032810 (2015).

  21. Universality in the spectral and eigenfunction properties of random networks
    J. A. Méndez-Bermúdez, A. Alcazar-López, A. J. Martínez-Mendoza, Francisco A. Rodrigues and Thomas K. DM. Peron
    Phys. Rev. E 91, 3, 032122 (2015).

  22. Entropy of weighted recurrence plots
    Deniz Eroglu, Thomas K. DM. Peron, Norbert Marwan, Francisco A. Rodrigues, Luciano da F. Costa, Michael Sebek, Istvan Kiss, and Jürgen Kurths
    Phys. Rev. E 90, 4, 042919 (2014).

  23. Correlations Between Climate Network and Relief Data
    Thomas K. DM. Peron, Cesar Comin, Diego Amancio, Luciano da F. Costa, Francisco A. Rodrigues, and Jürgen Kurths
    Nonlinear Processes in Geophysics, 21: 1127–1132 (2014).

  24. Cooperative behavior between oscillatory and excitable units: the peculiar role of positive coupling-frequency correlations
    Bernard Sonnenschein, Thomas K. DM. Peron, Francisco A. Rodrigues, Jürgen Kurths, and Lutz SchimanskyGeier
    European Physical Journal B, 87:182 (2014).

  25. Low-dimensional behavior of Kuramoto model with inertia in complex networks
    Peng Ji, Thomas K. DM. Peron, Francisco A. Rodrigues, and Jürgen Kurths
    Scientific Reports, 4:4783 (2014).

  26. Analysis of cluster explosive synchronization in complex networks
    Peng Ji, Thomas K. DM. Peron, Francisco A. Rodrigues, and Jürgen Kurths
    Phys. Rev. E 90, 6, 062810 (2014).

  27. Cluster explosive synchronization in complex networks
    Peng Ji, Thomas K. DM. Peron, Peter J. Menck, Francisco A. Rodrigues, and Jürgen Kurths
    Phys. Rev. Lett. 110, 21, 218701 (2013).

  28. Synchronization of clustered random networks
    Thomas K. DM. Peron, Francisco A. Rodrigues, and Jürgen Kurths
    Phys. Rev. E 87, 3, 032807 (2013).

  29. The influence of network properties on the synchronization of Kuramoto oscillators quantified by a Bayesian regression analysis
    Guilherme F. de Arruda, Thomas K. DM. Peron, Marinho G. de Andrade, Jorge A. Achcar, and Francisco A. Rodrigues
    Journal of Statistical Physics, 152, 3, 519–533 (2013).

  30. Determination of the critical coupling of explosive synchronization transitions in scale-free networks by mean-field approximations
    Thomas K. DM. Peron and Francisco A. Rodrigues
    Phys. Rev. E 86, 5, 056108 (2012).

  31. Explosive synchronization enhanced by time-delayed coupling
    Thomas K. DM. Peron and Francisco A. Rodrigues
    Phys. Rev. E 86, 1, 016102 (2012).

  32. The structure and resilience of financial market networks
    Thomas K. DM. Peron, Luciano da F. Costa and Francisco A. Rodrigues
    Chaos, 22, 01311 (2012).

  33. Collective behavior in financial markets
    Thomas K. DM. Peron and and Francisco A. Rodrigues
    Europhysics Letters (EPL) 96, 4 (2011).

Thesis

Thomas K. DM. Peron, Dynamics of Kuramoto oscillators in complex networks, 2017.